GROTHENDIECK POLYNOMIALS AND QUIVER FORMULAS By ANDERS S. BUCH, ANDREW KRESCH, HARRY TAMVAKIS, and ALEXANDER YONG

نویسندگان

  • A. S. BUCH
  • A. KRESCH
  • H. TAMVAKIS
  • A. YONG
چکیده

Fulton’s universal Schubert polynomials give cohomology formulas for a class of degeneracy loci, which generalize Schubert varieties. The K-theoretic quiver formula of Buch expresses the structure sheaves of these loci as integral linear combinations of products of stable Grothendieck polynomials. We prove an explicit combinatorial formula for the coefficients, which shows that they have alternating signs. Our result is applied to obtain new expansions for the Grothendieck polynomials of Lascoux and Schützenberger.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Grothendieck Polynomials and K-theoretic Factor Sequences

We give a nonrecursive combinatorial formula for the expansion of a stable Grothendieck polynomial in the basis of stable Grothendieck polynomials for partitions. The proof is based on a generalization of the EdelmanGreene insertion algorithm. This result is applied to prove a number of formulas and properties for K-theoretic quiver polynomials and Grothendieck polynomials. In particular we for...

متن کامل

On Combinatorics of Quiver Component Formulas

Buch and Fulton [7] conjectured the nonnegativity of the quiver coefficients appearing in their formula for a quiver variety. Knutson, Miller and Shimozono [21] proved this conjecture as an immediate consequence of their “component formula”. We present an alternative proof of the component formula by substituting combinatorics for Gröbner degeneration [21, 20]. We relate the component formula t...

متن کامل

Alternating Formulas for K-theoretic Quiver Polynomials

The main theorem here is the K-theoretic analogue of the cohomological ‘stable double component formula’ for quiver polynomials in [KMS03]. This K-theoretic version is still in terms of lacing diagrams, but nonminimal diagrams contribute terms of higher degree. The motivating consequence is a conjecture of Buch on the sign-alternation of the coefficients appearing in his expansion of quiver K-p...

متن کامل

Grothendieck Classes of Quiver Varieties

We prove a formula for the structure sheaf of a quiver variety in the Grothendieck ring of its embedding variety. This formula generalizes and gives new expressions for Grothendieck polynomials. Our formula is stated in terms of coefficients that are uniquely determined by the geometry and can be computed by an explicit combinatorial algorithm. We conjecture that these coefficients have signs t...

متن کامل

On a Conjectured Formula for Quiver Varieties

In A.S. Buch and W. Fulton [Invent. Math. 135 (1999), 665–687] a formula for the cohomology class of a quiver variety is proved. This formula writes the cohomology class of a quiver variety as a linear combination of products of Schur polynomials. In the same paper it is conjectured that all of the coefficients in this linear combination are non-negative, and given by a generalized Littlewood-R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005